Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application

Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment.In this paper, we present a system which allows read more for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG) signals.The efficiency of this approach was evaluated by means of real-time experimentations moen rothbury faucet on two subjects performing three different mental tasks.

To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed.Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.

Leave a Reply

Your email address will not be published. Required fields are marked *